일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||
6 | 7 | 8 | 9 | 10 | 11 | 12 |
13 | 14 | 15 | 16 | 17 | 18 | 19 |
20 | 21 | 22 | 23 | 24 | 25 | 26 |
27 | 28 | 29 | 30 | 31 |
- ssd
- One stage detector
- SSD 리뷰
- 커피후기
- ECCV
- 프로그래머스bfs
- Paper list
- Single Shot MultiBox Detector
- 코딩테스트2단계
- deep learning
- Object Detection
- 프로그래머스
- Faster R-CNN
- 프로그래머스타겟넘버파이썬
- Pytorch pruning
- 프로그래머스게임맵최단거리
- 프로그래머스너비우선탐색
- 프로그래머스타겟넘버정답
- 최솟값 만들기
- 코딩테스트연습
- 프로그래머스네트워크
- pytorch
- Code Study
- 코딩테스트네트워크
- Two stage Detector
- 다음큰숫자
- Pruning Tutorial
- 프로그래머스파이썬
- 프로그래머스타겟넘버
- 타겟넘버bfs
- Today
- Total
목록deep learning (2)
soyeonland
learning rate 확인하고 싶을 때 def get_lr(optimizer): for param_group in optimizer.param_groups: return param_group['lr'] model.children() returns model.children() is a generator that returns layers of the model from which you can extract your parameter tensors using .weight or .bias[1] print(list(model.children())) [Conv2d(1, 6, kernel_size=(3, 3), stride=(1, 1)), Conv2d(6, 16, kernel_size=(3, 3), str..
읽은 논문 Yoo CVPR 2015 AttentionNet : Aggregating Weak Directions for Accurate Object Detection He CVPR 2016 Deep Residual Learning for Image Recognition Haward 2017 MobileNets : Efficient Convolutional Neural Networks for Mobile Vision Applications ResNext Girshick CVPR 2014 R-CNN : Rich feature hierarchies for accurate object detection and semantic segmentation. He TPAMI 2015 Spatial Pyramid Pool..